
Shopping Cart App

Overview:

The project involved developing a solution using PowerApps application with SharePoint list for

developing Shopping cart app. This project enabled Shopping items and adding them to cart.

Technologies:
SharePoint, PowerApps (Canvas Apps),

Project Description:

The PowerApps Shopping Cart project is an application built using PowerApps, a low-code platform

by Microsoft. The project aims to create a shopping cart experience for users to select and purchase

items from a catalog. The app utilizes a SharePoint list as a data source to store product information,

and a collection to manage the shopping cart.

Components:

PowerApps: The development platform used to build the application. PowerApps offers a user-

friendly interface with drag-and-drop functionality, making it accessible even to those with limited

coding experience.

SharePoint List: Acts as the product database. It stores information about each item, such as

product name, description, price, image link, and unique identifier.

Collection: A temporary storage within the app. It functions as the virtual shopping cart, holding

information about the products a user chooses to purchase. This includes the chosen product ID,

quantity desired, and potentially the calculated subtotal for that item.

Sample and Design :

Create datasource

Steps

 Create a SharePoint list and name it as Shopping Cart.

 Create fields Product Description(multilinetext field), Price(Currency field), Color(choice
field), Size(singlelinetext field), ImageLink(Single line text field).

 Add items to the list.

 Create another SharePoint list with name Shopping Cart Ordered Items with fields such as
Product price(currency field), Product Id(Number), QTY(number), ItemSize(single line text),
subtotal (Number), Ordered ID(number).

 Create a SharePoint list and name it as Shopping Cart orders. And add fields as
OrderTotal(number field), OrderComments(multilinetext).

PowerApps Shopping Cart Home screen

 Go to make.powerapps.

 Create blank app

 Create header by adding button and naming it with Shooping Cart.

 For welcome message add a label and in text property give "Welcome "&User().FullName.

 Add a label provide fill property with RGBA(255, 255, 255, 0.75) and provide Text

 Add button and name it as Shop! and in OnSelect property give Navigate(‘FindItem’).
 Add another button name it as View Orders and in OnSelect property give Navigate('Check

out')

Use Case- Power App shopping cart app home screen is a welcome screen, when a user login to
PowerApps he will get this screen, this screen will show welcome message, from this screen the user
can navigate to Shopping item screen and also navigate to view order screen.

Find Items screen:

Use case- This screen shows items with cost, quantity, size, description of item subtotal cost based
on selected number of items. Also show added items on cart.

Steps
 Create new screen

 Add Header and name it with Find Items.

 Add a gallery with three created list.

 Change gallery layout to Image, Title, subtitle and body.

 In image property of gallery add ThisItem.ImageLink.

 Add a label in the gallery and name it as QTY.

 Add a slider and in Max property of the slider provide 5.

 Add a text label and in text property provide size.

 Add a dropdown to the gallery and in items property provide Split(ThisItem.Size,”,”).

 Add a label to the gallery and in text property provide “subtitle: “ &
Text(ThisItem.Price*Slider.Value,”$#,##0.00”.

 Change “>” icon to “+” icon and in DisplayMode provide If(Slider1.Value >
0,DisplayMode.Edit,DisplayMode.Disabled).

 In OnSelect property of +icon, provide Collect(colShoppingCart, {Title :ThisItem.Title,
ProductPrice:ThisItem.Price,ProductID : THisItem.ID, QTY :Slider1.Value, ItemSize
:Dropdown1.selected.Value, SubTotal
(Slider1.Value*ThisItem.Price)});Reset(Slider1);Reser(Dropdown1);
Set(varShowScreen,true).

 Add another vertical gallery to the screen and add data source as colShoppingCart.

 Add layout of the gallery as Title.

 Add a label to the gallery and in text property provide “QTY :” & ThisItem.QTY.

 Change “>” icon to trans icon and in OnSelect property of trans provide
Remove(colShoppingCart,ThisItem).

 Add a label and in text property provide With({ST:Sum(colShoopingCart,SubTotal)},"Item
Total: " & Text(ST,"[$-en-US]$#,##0.00") & "
Tax:7%
Shipping: $4.99
Total: " & Text(ST+ST*0.7+4.99,"[$-en-US]$#,##0.00")).

 Add a button to screen name it as Check out. In DisplayMode of this button provide
If(IsEmpty(colShoopingCart), DisplayMode.Disabled,DisplayMode.Edit).

 In OnSelect property of the button provide Navigate('Check out').

 For Success prompt message Add a rectangle and made Fill property as
RGBA(169,169,169,0.75).

 Add another rectangle over here and make the fill property as Color.White.

 Add two buttons over the rectangle and name it as Keep Shopping and Add to Cart.

 In OnSelect property of Keep Shopping button provide Set(varShowSuccess, false).

 Add a label on the rectangle and in text property provide “Successfully added items to
cart”.

 Group all these rectangles and buttons and in visible property provide varShowSuccess.

 In Go to Cart button OnSelect property provide Navigate(Checkout).

 In checkout screen add a vertical gallery and in datasource property add colShoppingCart
collection.

 In gallery image property provide lookup(‘Shopping Cart Items’,
ID=ThisItem.ProductID).ImageLink.

 Add a text input to the gallery and in default property provide ThiItem.QTY.

 Make subtitle of the gallery to ThisItem.Subtotal.

 Make title as ThisItem.ItemSize & “-“ & ThisItem.ProductPrice.

 In Input text’s onChange property provide patch(colShoppingCart,ThisItem, {QTY:
Value(self.text), subtotal: Value(self.text)*ThisItem.ProductPrice}).

 Add a text label to the checkout screen & make the text property as With({ST:
Sum(colShoppingCart,subtotal)}, “Item Total: “ & Text(ST, “[$-en-US]$#,##0.00”)& Tax:7%
Shipping:$4.99
Total :”Text(ST+ST*0.7+4.99,”[$-en-US]$#,##0.00”)).

 Add two label for name and comments.

 Add two input text fields, one for name and one for comment and make comments input
text to multilinetext.

 Add a button and name it as place order, In OnSelect property provide
Set(varShowSpinner,true); Set(varRecordId, Patch(‘Shopping cart Orders’,
Default(‘Shopping Cart Orders’),{Order Total’:
With({ST:Sum(cplShoppingCart,Subtotal))},ST+ST*0.7+4.99),’Order comments’: Input
Comments.Text,Title:InputName.Text}).ID); ClearCollect(colOrderedItems,
AddColumns(colShoppingCart,”OrderID”,varRecordID)); Collect(‘Shopping Cart Ordered
Items’,colorderedItems);Navigate(ShoppingCartScreen);Set(varShowSpinner,false);

This project was successfully completed by using the above-mentioned technology, and it is
maintaining the required requirements.

	Overview:
	Technologies:
	Project Description:

